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We show that the static friction force which must be overcome to render a sticking contact sliding is reduced
if an external torque is also exerted. As a test system we study a planar disk lying on a horizontal flat surface.
We perform experiments and compare with analytical results to find that the coupling between static friction
force and torque is nontrivial: It is not determined by the Coulomb friction laws alone, instead it depends on
the microscopic details of friction. Hence, we conclude that the macroscopic experiment presented here reveals
details about the microscopic processes lying behind friction.
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I. INTRODUCTION

Although the scientific investigation of friction started
several hundred years ago with the first quantitative experi-
ments by Leonardo da Vincif1g, our knowledge about the
microscopic basis for friction is surprisingly incomplete.
This applies in particular to the onset of sliding, i.e., the
transition from static to dynamic friction. For example, it is
an open question whether the contact points give way simul-
taneously or sequentially on a certain time scalef2,3g.

Recently significant progress in this direction was made
by Rubinsteinet al., who have used fast photo arrays in order
to monitor the dynamics of contact points at the onset of
sliding f4g. Pushing a Plexiglass slider linearly, they find that
the contact points give way in a sequence that travels from
the trailing to the leading edge of the block. The front moves
initially with half of the surface wave speed, then acceler-
ates, and finally splits up into a sub- and an intersonic front.
Although the dynamics of front propagation is not yet fully
understood, these experiments show that the time scale on
which the contacts give way is very short.

In this paper we study the interplay of translation and
rotation at the onset of sliding both experimentally and theo-
retically. To this end we exert simultaneously a force and a
torque on a planar disk lying on a flat surface. Since trans-
lational and rotational static friction have the same micro-
scopic origin, they are mutually coupled. In particular, the
critical force at the onset of sliding and spinning turns out to
depend on the torque, and vice versa. We argue that this
critical line of forces and torques, where the disk starts mov-
ing, reveals information about the microscopic dynamics,
which is not as easily accessible in experiments using lin-
early moving sliders.

The interplay of force and torque for asliding disk was
studied previously in Refs.f5–7g. It was shown that the slid-
ing friction of a circular disk is reduced if the contact is also
spinning with relative angular velocityv—a phenomenon
that plays an important role in various games such as curling
or ice hockeyf8–10g. It turns out that this reduction depends
on the dimensionless ratio«=v /vR, where R denotes the
radius of the disk andv is the tangential relative velocity at
the center of the contact area. Based on the Coulomb friction
law one obtains a sliding friction force

uFu = mdNFs«d s1d

and a friction torque

uT u = mdNRTs«d, s2d

where md is the dynamic friction coefficient andN is the
integrated normal force acting on the contact area. Apart
from the limit of pure sliding«→`, whereF→1, the func-
tions Fs«d and Ts«d depend on the pressure distribution
across the contact areaf5,6,11g. Assuming uniform pressure
over the area of the disk these functions have been evaluated
analytically, describing the coupling of force and torque of a
circular disk in the sliding casef7g.

Turning to static friction let us now consider a resting
disk. Applying simultaneously a torque and a force we are
interested in the thresholdssFc,Tcd at which the disk starts
moving. Our daily experience tells us that if we want to
move a heavy object across the floor it is easier to do so if we
apply a torque to it while pushing. But how are these quan-
tities, force and torque, exactly related? The aim of this paper
is to determine this relation experimentally and to study pos-
sible theoretical implications with respect to the microscopic
aspects of friction.

Regarding the microscopic dynamics, the advantage of
friction experiments involving rotational degrees of freedom
lies in the fact that stresses at the contact points of the sur-
face with the underlying support are not evenly distributed
under simultaneous action of a torque and a force. Therefore,
the question arises as to how sliding and spinning set in.
Intuitively one may think of two possible scenarios.

sad When the threshold is reached at those microcon-
tacts where the local stress is maximal, these contacts may
break irreversibly. After breaking the released stress is dis-
tributed among the remaining microcontacts. As some of
these contacts cannot sustain the increasing stress anymore
and break, an avalanchelike process sets in so that eventually
all contacts break and the whole disk begins to move.

sbd As a different scenario, the broken microcontacts
may immediately rearrange themselves to form new con-
tacts, redistributing the released stress over the remaining
and the newly formed contact points. This microscopic stick-
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slip creeping continues until all contact points self-organize
in such a way that they sustain approximately the same
stress. Therefore, by increasing the external force or torque,
all microcontacts of a perfectly rigid slider reach the thresh-
old of detachment simultaneously.

We note that experiments such as those of Rubinsteinet
al. f4g, which do not involve rotational degrees of freedom,
cannot easily discriminate between the two scenarios. Al-
though the existence of propagating fronts in these experi-
ments seems to favor scenariosad, the high propagation ve-
locity indicates that these fronts may be caused by the
inherent elasticity of the slider, leading to slightly higher
stresses of the microcontacts at the trailing edge.

In the following section we report on experimental results
for a disk subjected to an external force and torque, deter-
mining the critical line at which spinning and sliding set in.
In Sec. III we study simple microscopic models based on the
two scenarios described above in order to calculate the criti-
cal line analytically. It turns out that for the avalanche sce-
nario sad a linear dependence is found while in the second
casesbd a nontrivial curve is obtained. Thus the two sce-
narios lead to a different measurable macroscopic coupling
between static force and torque. Comparing these results
with the experimental data we can rule out scenariosad while
we find convincing agreement with scenariosbd. Finally, in
Sec. IV we discuss the dynamics of a disk shortly after the
onset of sliding.

II. EXPERIMENTS

In order to determine the critical line of detachment we
performed a series of experiments where a pulling force and
a torque were applied simultaneously to a slider on a hori-
zontal surface.

Most of the experiments were carried out using circular
disks made of different materials with radii ranging fromR
=149 to 160 mm and masses ranging from 324 to 2278 g. All
disks had mechanically polished surfaces and were provided
with small hooks along the perimeterssee Fig. 1d from which
they could be pulled. To measure torques and forces each
disk was placed on a fixed and macroscopically flat horizon-
tal surface covered with carpet. Carpet-covered tracks guar-
antee a more uniform pressure distribution over the contact

area and have been used successfully in other friction experi-
ments beforef7,12g. Force meters were then attached to the
disks through hooks.

Once the disk was placed on the surface a torque was
appliedsas indicated in Fig. 1 by the force pairK and −K d.
The disk was slowly pulled until it started moving. The force
meters were set to register the maximum applied pulling
force Fc. For each fixed value of the torque a set of maxi-
mum force readings was made. The experiments were re-
peated several times under similar temperature and humidity
conditions.

In Fig. 2 we present, for the sake of clarity, the results of
two selected experiments using disks made of wood and
plasticsdisks of different materials such as brass or steel with
different weights and sizes led to similar resultsd. The curves
are parametrized in terms of the dimensionless variables

F =
uFu

msN
, T =

uT u
msNR

, s3d

where N is the normal load, andms is the static friction
coefficient, which is determined such that the average over
the measurementskFl=1 at the threshold from sticking to
sliding without torque. As can be seen, the experimental re-
sults are in excellent agreement with the theoretical predic-
tion for scenariosbd, which is shown as a solid line and will
be derived in the following section.

For smallF the measurement described above is difficult
to perform since the applied torques are already close to their
threshold value without additional applied force. Therefore,
we inverted the procedure for smallF, i.e., forces were kept
fixed and torques were varied until the critical threshold was
reached. Control experiments confirmed that both types of
measurement give compatible results within experimental
error.

III. THEORY

In order to determine the static thresholds of force and
torque analytically for the two scenarios described in the

FIG. 1. Schematic view of the experiment: a uniform disk of
radiusR lies on a flat horizontal surface and is subject to an applied
torqueT =2RK and forceF.

FIG. 2. Measured values of torque and force for a woodens+d
and plasticshd disk as a function of the dimensionless variables
F=F /msN and T=T/msNR. The dashed and solid lines represent
the theoretical predictions for scenariossad and sbd, respectively
ssee text for detailsd.
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Introduction, let us consider a simple model in which the
microcontacts below the threshold may be thought of as elas-
tic springs. This means that external forces, which are too
weak to let the disk slide, are compensated by tiny elastic
deformations of microcontacts. These deformations cause a
measurable recoilstranslationdy and rotationdwd, when the
external forces are switched off. The recoil was observed by
placing a small mirror on the surface of the disk and letting
a laser beam reflect on it. The beam was projected onto a
screen a few meters away so as to make the small displace-
ments visible.

The local displacement of a coarse grained surface ele-
ment of the disk at a distancer from the center can be ex-
pressed by

usr,wd = dyey + rdwew, s4d

wheredy denotes the displacement of the disk anddw is the
rotation angle with respect to the center of the disk. We as-
sume that in a coarse grained description the elastic restoring
force per unit area is

fsr d = − kusr d. s5d

In the case of a circular disk the external force and torque
are given by

F = −E
rPA

dx dyfsr d, s6d

T = −E
rPA

dx dyr 3 fsr d, s7d

where the integrals are performed over the areaA of the disk.
As long as the slider does not yet move, the local restoring
forces integrated over the contact area compensate the exter-
nal forceF and the external torqueT.

We recall that combined translation and rotation of a rigid
body in a plane can be interpreted at every moment as a pure
rotation around a particular pointr 0=−sdy/dwdex ssee Fig.
3d, so that

usr d = fez 3 sr − r 0dgdw. s8d

For later convenience we introduce the dimensionless param-
eter

g ;
r0

R
=

dy

Rdw
. s9d

In what follows we assume that a microcontact breaks
whenever the local elastic forceufsr du exceeds the threshold
msp, where ms is the static friction coefficient andp
=N/pR2 is the normal pressure. It is assumed that the pres-
sure and the friction coefficient are constant throughout the
contact area.

sad First scenario: Breaking of the weakest microcon-
tact. In this case the disk starts sliding as soon as there exists
a contact point,r which exceeds the thresholdufsr du=msp
triggering an avalanche in which all other points exceed the
threshold, too. Obviously the pointr =Rex at the border of
the disk has the largest displacement so that it is the first to
reach the threshold. Therefore, the critical rotation angledwc
is given by

dwc =
msp

kRs1 + gd
. s10d

Inserting this result into Eqs.s5d ands8d, the force and torque
thresholds, Eqs.s6d and s7d, become

Fc =
g

1 + g
msNey, s11d

Tc =
1

2

1

1 + g
msNRez. s12d

The normalized torque thresholdT=Tc/msNR is therefore a
linear function of the normalized force thresholdF
=Fc/msN:

T =
1

2
s1 −Fd. s13d

sbd Second scenario: Collective breaking of micro-
bonds. The previous result is in marked contrast to the sec-
ond scenario, where we assume that the forces per unit area,
Eq. s5d, relax and are redistributed among existing and newly
formed microcontacts, thereby self-organizing into a state
where virtually all surface elements reach the threshold si-
multaneously. Since the direction of the displacement in a
given point is always the same, we assume that thedirection
of the local forceu / uuu does not change during this self-
organization process; hence

Fc = mspE
rPA

dx dy
usr d
uusr du

, s14d

and

Tc = mspE
rPA

dx dyr 3
usr d
uusr du

. s15d

Together with Eq.s4d these integrals are exactly the same as
in the sliding and spinning casef7g. One may write them in

FIG. 3. Geometry used to solve the equations for the coupling of
forces and torques.r is the position of an infinitesimal element of
the disk andr 0 the position vector of the instantaneous center of
rotationO.

MACROSCOPIC DIAGNOSTICS OF MICROSCOPIC… PHYSICAL REVIEW E 71, 066602s2005d

066602-3



a more transparent way in terms of the previously defined
anglew,

Fc = mspeyE
rPA

dx dy
r cosw − r0

Îr2 + r0
2 − 2rr 0cosw

s16d

and

Tc = mspezE
rPA

dx dy
r2 − rr 0cosw

Îr2 + r0
2 − 2rr 0cosw

. s17d

These integrals can be solved exactly and have been shown
to depend onr0 only through the dimensionless ratio
g=r0/R. The results forF=Fc/msN andT=Tc/msNR are

Fsgd =
2s1 + gd

3pg
Fs1 + g2dES2g1/2

1 + g
D − s1 − gd2KS2g1/2

1 + g
DG ,

s18d

Tsgd =
4s1 + gd

9p
Fs2 − g2dES2g1/2

1 + g
D + s1 − gd2KS2g1/2

1 + g
DG .

s19d

HereK andE are the complete elliptic integrals of the first
and the second kind, respectivelyf13g. Although expressed
in a more compact form, these two formulas coincide exactly
with those for sliding frictionf7,14g. By varyingg between 0
and` they provide a parameter representation of the critical
curve, which is shown in Fig. 2. Obviously, the curve is in
agreement with the experimental data, which indicates the
scenario of collective breaking as the physically correct one.

IV. ONSET OF SLIDING

So far we studied the critical threshold from static to slid-
ing friction. Let us now turn to thedynamicsof the disk
immediately after the onset of sliding. Figure 4 shows the
thresholds for the onset of sliding,Fc/N=msFsgd and
Tc/NR=msTsgd, which lie on a curve parametrized by the

recoil parameterg=dy/Rdw. Siding friction and torque, on
the other hand, are given byF /N=mdFs«d and T/NR
=mdTs«d with a smaller friction coefficientmd,ms and the
motion parameter

« =
v

vR
. s20d

If the force Fext and torqueText reach the threshold for the
transition from sticking to sliding at a certain pointg, the
body starts moving, which in general means that it starts
sliding andspinning. Hence the question arises, which value
of « will be selected; in other words, what sliding friction
and torque will be observed immediately after the transition
from sticking to moving.

The most plausible answer is that« will be given by the
ratio of velocity andR times the angular velocity an infini-
tesimal time after the motion started, i.e., Eq.s20d will be
replaced by

« =
v̇

v̇R
. s21d

The acceleration is given by the difference between static
and sliding friction,

mv̇ = Fext − mdNFs«d = NfmsFsgd − mdFs«dg, s22d

wherem is the mass of the slider. Similarly the angular ac-
celeration is given by

Qv̇ = NRfmsTsgd − mdTs«dg, s23d

whereQ is the moment of inertia. Inserting these equations
into Eq.s21d one obtains an implicit equation for the value of
« which will be selected, if the threshold is reached at a
given value ofg:

« =
Q

mR2

msFsgd − mdFs«d
msTsgd − mdTs«d

. s24d

It is useful to introduce two special values of« for the
further discussion, which depend on the pointg at which the
threshold is reached.«1sgdP f0,`d is defined by

Ts«1d ; minSms

md
Tsgd,Ts0dD . s25d

Similarly, «2sgdP f0,`d is defined by

Fs«2d ; minSms

md
Fsgd,1D . s26d

As Q /mR2ù0 and«ù0, Eq. s24d implies that«sgd is se-
lected from the interval

«1sgd ø «sgd ø «2sgd. s27d

V. CONCLUSIONS

In this paper we studied both experimentally and theoreti-
cally the coupling between static friction and torque for vari-

FIG. 4. Schematic plot ofsnormalizedd friction force and torque.
The upper curve marks the threshold, below which a static contact
is maintained. The lower curve respresents the sliding case. See text
for details.
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ous disks in dry contact with a track. Our results indicate that
before the onset of sliding broken microcontacts between
slider and track rearrange themselves to form new contacts,
releasing the stresses over the remaining contacts and the
newly formed ones. Redistributing the stresses the system
self-organizes until all contacts sustain approximately the
same stress. Therefore, as the force and torque are increased
up to the threshold, all coarse grained surface elements reach
their detachment thresholds simultaneously and the slider
moves.

Recent experiments by Rubinsteinet al. f4g using photo-
arrays to detect the time evolution of the contact area be-
tween a Plexiglass slab and a track of the same material as
the threshold is reached indicate that, in the presence of a
pushing force only, the process of detachment is accompa-
nied by a series of propagating cracks with three different
velocities. The one that propagates most slowly is the domi-
nant mechanism for detachment. These experiments indicate
that an avalanchelike detachment scenario takes place at the
transition from static to sliding friction, in contradistinction
to the previous discussion.

We propose that these results can be reconciled with our
findings by considering elastic deformations of the slider. In
our experimental setup the disk could be regarded as macro-
scopically rigid, whereas the Plexiglass slab used inf4g may
show local stress building up at the trailing edge when being

pushed. This could be checked experimentally by pulling at
the leading edge instead of pushing at the trailing one. It
would be interesting to see whether the detachment fronts
then move in the opposite direction.

We believe that a system under the simultaneous action of
a force and a torque represents a favorable experimental
setup, since each microcontact is subject to a different dis-
placement, which is not the case when only a force is ap-
plied. Therefore it would be interesting to investigate the
problem described in this paper with the technique of Rubin-
stein and co-workers. In particular, how would the propaga-
tion of cracks appear in a circular geometry?

The disk geometry we use might seem rather special.
However, the concepts presented in this paper can be gener-
alized straightforwardly to other contact geometries as well.
An example is given inf15g, where a tripod instead of a disk
is considered.
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