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Macroscopic diagnostics of microscopic friction phenomena
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We show that the static friction force which must be overcome to render a sticking contact sliding is reduced
if an external torque is also exerted. As a test system we study a planar disk lying on a horizontal flat surface.
We perform experiments and compare with analytical results to find that the coupling between static friction
force and torque is nontrivial: It is not determined by the Coulomb friction laws alone, instead it depends on
the microscopic details of friction. Hence, we conclude that the macroscopic experiment presented here reveals
details about the microscopic processes lying behind friction.
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. INTRODUCTION |F| = ugNF(e) (1)

Although the scientific investigation of friction started and a friction torque
several hundred years ago with the first quantitative experi-
ments by Leonardo da Vindil], our knowledge about the IT| = ugNRT(e), (2)
microscopic basis for friction is surprisingly incomplete.

This applies in particular to the onset of sliding, i.e., thewhere uq is the dynamic friction coefficient antll is the
transition from static to dynamic friction. For example, it is integrated normal force acting on the contact area. Apart
an open question whether the contact points give way simulfrom the limit of pure slidinge — o, where F— 1, the func-
taneously or sequentially on a certain time s¢al@]. tions F(e) and 7(e) depend on the pressure distribution

Recently significant progress in this direction was madeacross the contact ar¢s,6,11. Assuming uniform pressure
by Rubinsteiret al, who have used fast photo arrays in order gver the area of the disk these functions have been evaluated
to monitor the dynamics of contact points at the onset ofnalytically, describing the coupling of force and torque of a
sliding [4]. Pushing a Plexiglass slider linearly, they find that cjrcylar disk in the sliding casgr].
the contact points give way in a sequence that travels from Tyming to static friction let us now consider a resting
the trailing to the leading edge of the block. The front movesy;g) Applying simultaneously a torque and a force we are

initially with half of the surface wave speed, then acceler-yq ogted’in the thresholds.,T,) at which the disk starts
ates, and finally splits up into a sub- and an intersonic front,

Although the dynamics of front propagation is not yet fully moving. Our daily experience tells us that if we want to

understood, these experiments show that the time scale gpovea heavy obj(_act across th(’.} floor it s easier to do so if we
which the contacts give way is very short. apply a torque to it while pushing. But how are these quan-

In this paper we study the interplay of translation and_tities, force and to.rque, gxactly related? The aim of this paper
rotation at the onset of sliding both experimentally and theo-iS t0 determine this relation experimentally and to study pos-
retically. To this end we exert simultaneously a force and sible theoretl_ca_l implications with respect to the microscopic
torque on a planar disk lying on a flat surface. Since trans@Spects of friction.
lational and rotational static friction have the same micro- Regarding the microscopic dynamics, the advantage of
scopic origin, they are mutually coupled. In particular, thefriction experiments involving rotational degrees of freedom
critical force at the onset of sliding and spinning turns out tolies in the fact that stresses at the contact points of the sur-
depend on the torque, and vice versa. We argue that thiice with the underlying support are not evenly distributed
critical line of forces and torques, where the disk starts movunder simultaneous action of a torque and a force. Therefore,
ing, reveals information about the microscopic dynamicsthe question arises as to how sliding and spinning set in.
which is not as easily accessible in experiments using linintuitively one may think of two possible scenarios.
early moving sliders. (@ When the threshold is reached at those microcon-
The interplay of force and torque forsliding disk was  tacts where the local stress is maximal, these contacts may
studied previously in Ref$5-7]. It was shown that the slid- breakirreversibly. After breaking the released stress is dis-
ing friction of a circular disk is reduced if the contact is also tributed among the remaining microcontacts. As some of
spinning with relative angular velocity—a phenomenon these contacts cannot sustain the increasing stress anymore
that plays an important role in various games such as curlingnd break, an avalanchelike process sets in so that eventually
or ice hockey[8-10]. It turns out that this reduction depends all contacts break and the whole disk begins to move.
on the dimensionless ratio=v/wR, where R denotes the (b) As a different scenario, the broken microcontacts
radius of the disk and is the tangential relative velocity at may immediately rearrange themselves to form new con-
the center of the contact area. Based on the Coulomb frictiotacts, redistributing the released stress over the remaining
law one obtains a sliding friction force andthe newly formed contact points. This microscopic stick-
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FIG. 1. Schematic view of the experiment: a uniform disk of F/p N

radiusR lies on a flat horizontal surface and is subject to an applied

torqueT =2RK and forceF.
q FIG. 2. Measured values of torque and force for a woo@en

) ) ) ) ) _and plastic(0) disk as a function of the dimensionless variables
slip creeping continues until all contact points self-organizer=F/,N and 7=T/uNR The dashed and solid lines represent
in such a way that they sustain approximately the samene theoretical predictions for scenarit® and (b), respectively
stress. Therefore, by increasing the external force or torquesee text for details
all microcontacts of a perfectly rigid slider reach the thresh-

old of detachment sim_ultaneously. . . area and have been used successfully in other friction experi-
We note that experiments such as those of Rubin®ein onts heford7,12). Force meters were then attached to the
al. [4], which do not involve rotational degrees of freedom, 4icks through hooks.
cannot easily discriminate between the two scenarios. Al- 5. .e the disk was placed on the surface a torque was
though the existence of propggatlng fronts in theg,e eXperizpnlied(as indicated in Fig. 1 by the force patr and &K ).
ments seems to favor scena(®@, the high propagation ve- g gisk was slowly pulled until it started moving. The force
locity indicates that these fronts may be caused by theneters were set to register the maximum applied pulling
inherent elastlcny_ of the slider, Ieadmg. to slightly higher ;..o F.. For each fixed value of the torque a set of maxi-
stresses of the microcontacts at the trailing edge. mum force readings was made. The experiments were re-
In the following section we report on experimental reSUIISPeated several times under similar temperature and humidity
for a disk subjected to an external force and torque, detelzqqitions.
mining the critical I|n_e at Whl_ch spinning and sliding setin. |, Fig. 2 we present, for the sake of clarity, the results of
In Sec. llI we study §|mple microscopic models based on th‘fwo selected experiments using disks made of wood and
two scenarios described above in order to calculate the critis|agtic (disks of different materials such as brass or steel with
cal line analytically. It turns out that for the avalanche sce-itarent weights and sizes led to similar resulEhe curves

nario (a) a linear dependence is found while in the second,re harametrized in terms of the dimensionless variables
case(b) a nontrivial curve is obtained. Thus the two sce- | T
F T

narios lead to a different measurable macroscopic coupling

between static force and torque. Comparing these results F uN’ uNR’
with the experimental data we can rule out scenéjavhile ) ] o
we find convincing agreement with scenaftm). Finally, in ~ Where N is the normal load, ands is the static friction

Sec. IV we discuss the dynamics of a disk shortly after thecoefficient, which is determined such that the average over
onset of sliding. the measurementsF)=1 at the threshold from sticking to

sliding without torque. As can be seen, the experimental re-
sults are in excellent agreement with the theoretical predic-
tion for scenaridb), which is shown as a solid line and will
In order to determine the critical line of detachment webe derived in the following section.
performed a series of experiments where a pulling force and For smallF the measurement described above is difficult
a torque were applied simultaneously to a slider on a horito perform since the applied torques are already close to their
zontal surface. threshold value without additional applied force. Therefore,
Most of the experiments were carried out using circularwe inverted the procedure for smdl i.e., forces were kept
disks made of different materials with radii ranging frétn  fixed and torques were varied until the critical threshold was
=149 to 160 mm and masses ranging from 324 to 2278 g. Alfeached. Control experiments confirmed that both types of
disks had mechanically polished surfaces and were provide@ieasurement give compatible results within experimental
with small hooks along the perimetesee Fig. 1from which ~ €rror.
they could be pulled. To measure torques and forces each
disk was placed on a fixed and macroscopically flat horizon-
tal surface covered with carpet. Carpet-covered tracks guar- In order to determine the static thresholds of force and
antee a more uniform pressure distribution over the contadbrque analytically for the two scenarios described in the
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u(r) =[e, X (r=ro)]de. ®)
Y F-To — F For later convenience we introduce the dimensionless param-
"o r / K eter
y
/ T oy
—— Y=o 5. (9)
X In what follows we assume that a microcontact breaks

whenever the local elastic fordfr)| exceeds the threshold
uP, wWhere ug is the static friction coefficient andy
=N/xR? is the normal pressure. It is assumed that the pres-
sure and the friction coefficient are constant throughout the

FIG. 3. Geometry used to solve the equations for the coupling Of:ontact alrfa.t i Breaki fth kest mi

forces and torques. is the position of an infinitesimal element of (a)h' Ir's scer:]a::lip.k rea m%.g. € weakes r‘r;:crocon.—
the disk andry the position vector of the instantaneous center oftaCt In this Ca}SEt e _'S starts sliding as soon as there exists
rotation O. a contact pointr which exceeds the thresholt(r)|=ugp
triggering an avalanche in which all other points exceed the
Introduction, let us consider a simple model in which thethreshold, too. Obwously.the poimt=Re, at thg porder pf

. the disk has the largest displacement so that it is the first to
microcontacts below the threshold may be thought of as elas-

tic springs. This means that external forces, which are tocgeaCh the threshold. Therefore, the critical rotation amgie

weak to let the disk slide, are compensated by tiny elastic 9"Ve" by
deformations of microcontacts. These deformations cause a So. = MsP 10
measurable recoitranslationdy and rotationde), when the Pe= KR(L+7) (10

external forces are switched off. The recoil was observed b¥ ) _ )

placing a small mirror on the surface of the disk and letting/nserting this result into Eqs5) and(8), the force and torque

a laser beam reflect on it. The beam was projected onto &resholds, Eqs(6) and(7), become

screen a few meters away so as to make the small displace- y

ments visible. Fo= 1 HsNey, (11)
The local displacement of a coarse grained surface ele- Y

ment of the disk at a distanaefrom the center can be ex-

pressed by

= Ei NRe, (12
c~ 21 + yﬂs Z*
u(r,¢) = dyey +roge,, @ The normalized torque thresholf=T,/ uNR is therefore a

where sy denotes the displacement of the disk auis the linear function of the normalized force threshold

rotation angle with respect to the center of the disk. We as- Fol msN:

sume that in a coarse grained description the elastic restoring 1

force per unit area is 7= 5(1 -5 (13)
f(r)=-ku(r). (5) (b) Second scenario: Collective breaking of micro-

) , bonds The previous result is in marked contrast to the sec-
In the case of a circular disk the external force and torqueyng scenario, where we assume that the forces per unit area,
are given by Eq.(5), relax and are redistributed among existing and newly
formed microcontacts, thereby self-organizing into a state
F= _f dx dyf(r), (6) where virtually gll surface .elements reach .the thresholc_i Si-
reA multaneously. Since the direction of the displacement in a
given point is always the same, we assume thatthezxtion
of the local forceu/|u| does not change during this self-

T= _J dx dyr X f(r), 7) organization process; hence
" F pJ dx dyﬂ (14)
= )72 ,
where the integrals are performed over the aed the disk. © A lu(r)

As long as the slider does not yet move, the local restorin
forces integrated over the contact area compensate the exter-
nal forceF and the external torqué. u(r)

We recall that combined translation and rotation of a rigid Te= MSPJ dx dyr X un)] (15
body in a plane can be interpreted at every moment as a pure reA
rotation around a particular poimp=—(dy/ Sp)e, (see Fig. Together with Eq(4) these integrals are exactly the same as
3), so that in the sliding and spinning cag&]. One may write them in

d
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T/NR recoil parametery=8y/Ré¢p. Siding friction and torque, on
the other hand, are given b¥/N=puyF(e) and T/NR
=uq2(e) with a smaller friction coefficienjuy< us and the
motion parameter

v
=—, 20
e=—2 (20
If the force Fe, and torqueTey, reach the threshold for the
transition from sticking to sliding at a certain poiw the
body starts moving, which in general means that it starts
sliding and spinning. Hence the question arises, which value

FIN of & will be selected; in other words, what sliding friction
Hd Mg and torque will be observed immediately after the transition
) ] o from sticking to moving.
FIG. 4. Schematic plot dinormalized friction force and torque. The most plausible answer is thatwill be given by the

The upper curve marks the threshold, below which a static contaglytio of velocity andR times the angular velocity an infini-

is maintained. The lower curve respresents the sliding case. See te{<; a1 time after the motion started. i.e E80) will be
for details. o

replaced by
a more transparent way in terms of the previously defined o= L (21)
angle g, WwR’
B . rcose—rg The acceleration is given by the difference between static

Fe= :““speyfr EAdX dy\’/rz +12— 21r ocosg (18)  and sliding friction,

and Mo = Fey — ugNF(e) = N[usF() — paF(e)],  (22)
r2 = Ir,cose wherem is the mass of the slider. Similarly the angular ac-
T.= ,uspezf dx dy / > g . (17 celeration is given by
reA \Vr2+15 - 2rr cose

Ow=N - )], 23
These integrals can be solved exactly and have been shown RusT(y) = pnaT(e)] 23
to depend onr, only through the dimensionless ratio where® is the moment of inertia. Inserting these equations

v=ro/R. The results fotF=F./ uN and7=T./ usNR are into Eq.(21) one obtains an implicit equation for the value of
o1+ )— 2 2,12 e which will be selected, if the threshold is reached at a
]__(y):_y (l+y2)E<—> —(l—y)2K<—)} given value ofy:
3my | 1+y l+y

oo O #TY) = paFle)
MR usT(y) — ugTle)

_41+y) 2-P)E 2y (12K 2y It is useful to introduce two special values offor the
T oon ( ) 1= 1+y further discussion, which depend on the pojrdat which the
) (19) threshold is reached,(y) €[0,%) is defined by

HereK andE are the complete elliptic integrals of the first Tley) = min( bg-(y)'ﬂo)) (25)
and the second kind, respectivdli3]. Although expressed Md
in a more compact form, these two formulas coincide exactl
with those for sliding frictio{ 7,14]. By varyingy between 0
andoe they provide a parameter representation of the critical (s
curve, which is shown in Fig. 2. Obviously, the curve is in Flez) = min| —F(y),1]. (26)
agreement with the experimental data, which indicates the Hd
scenario of collective breaking as the physically correct oneAs ®/mR=0 ande =0, Eq. (24) implies thate(y) is se-
lected from the interval

e1(y) < e(y) < &x(y). (27

(18) . (24

(y) 1+

YSimilarly, £,(y) e [0,) is defined by

IV. ONSET OF SLIDING

So far we studied the critical threshold from static to slid-
ing friction. Let us now turn to thelynamicsof the disk
immediately after the onset of sliding. Figure 4 shows the
thresholds for the onset of slidingr./N=uF(y) and In this paper we studied both experimentally and theoreti-
T./NR=uZ(y), which lie on a curve parametrized by the cally the coupling between static friction and torque for vari-

V. CONCLUSIONS
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ous disks in dry contact with a track. Our results indicate thapushed. This could be checked experimentally by pulling at
before the onset of sliding broken microcontacts betweenhe leading edge instead of pushing at the trailing one. It
slider and track rearrange themselves to form new contactsvould be interesting to see whether the detachment fronts
releasing the stresses over the remaining contacts and tiigen move in the opposite direction.

newly formed ones. Redistributing the stresses the system \\e believe that a system under the simultaneous action of
self-organizes until all contacts sustain approximately they force and a torque represents a favorable experimental
same stress. Therefore, as the force and torque are increasgqyp, since each microcontact is subject to a different dis-
up to the threshold, all coarse g_rained surface elements r?a%cement, which is not the case when only a force is ap-
their detachment thresholds simultaneously and the slid€fjieq. Therefore it would be interesting to investigate the

moves. problem described in this paper with the technique of Rubin-

Recent experiments by Rubinsteihal. [4] using photo- stein and co-workers. In particular, how would the propaga-

arrays to detect the time evolution of the contact area befion of cracks appear in a circular geometry?

tween a Plexiglass slab and a track of the same material as The disk geometry we use might seem rather special.

the threshold is reached indicate that, in the presence of Bowever, the concepts presented in this paper can be gener-
pushing force only, the process of detachment is accomp lized straightforwardly to other contact geometries as well.

nied by a series of propagating cracks with three dn‘feren_An example is given ifi15], where a tripod instead of a disk

velocities. The one that propagates most slowly is the domi- .
) . . . _Is considered.

nant mechanism for detachment. These experiments indicaf?

that an avalanchelike detachment scenario takes place at the

transition frpm stgtlc to_slldlng friction, in contradistinction ACKNOWLEDGMENTS

to the previous discussion.
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findings by considering elastic deformations of the slider. Inmas for bringing to their attention the more compact versions
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